Diseases of Domestic Animals:
• Dourine and Glanders: Negative.
• Strangles: Even in the absence of discernable clinical signs, some ponies had high titers of Streptococcus equi subsp. equi. Results are pending.
• Venereal Diseases: Negative, with the exception of horse syphilis, which was not tested for.
• Stratum corneum:
 - Stratum corneum was present in all tested samples.
 - The thickness of the stratum corneum was within normal limits for all tested samples.
• Allergens:
 - Allergens were not detected in any of the tested samples.
• Neutrophil and Lymphocyte Count:
 - The neutrophil count was within normal limits for all tested samples.
 - The lymphocyte count was within normal limits for all tested samples.
• Biopsy:
 - Biopsy results were negative for all tested samples.
• General Health:
 - The ponies were in good general health, with no clinical signs of disease.

Despite the absence of clinical signs, the findings from the biopsy and histopathological examination indicated that the ponies were exposed to or had been infected with the causative agent of strangles. The absence of clinical signs may be due to the low titers of the bacteria, which can result in a subclinical infection. Further testing and monitoring of the ponies will be necessary to determine the extent of the exposure and the potential for further transmission. The results of the study also highlight the importance of routine vaccination and the need for adequate biosecurity measures to prevent the spread of strangles in pony populations.
The international Equine Disease Quarterly, a publication of the University of Kentucky Equine Research Center, is an Equal Opportunity, Affirmative Action institution and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, age, disability or veteran status. The University of Kentucky, the University of Kentucky Livestock Disease Diagnostic Center, East Lansing, and the University of Kentucky College of Veterinary Medicine, Salt-Luming, Michigan, are cooperating in the publication of this journal. Permission must be obtained from the University of Kentucky for republication of any part of the contents of any issue of the Journal. Permission is granted without fee to reproduce the following titles for non-commercial purposes: Equine Infectious Diseases in France, Syndromic Surveillance of Equine Infections in France, and Poisoning in Horses.

Syndromic Surveillance of Equine Infections in France

This International Equine Disease Center, New Market, England, and other sources revealed the following disease outbreaks. A single case of sarcoid in a Thoroughbred horse in France was reported in a Thoroughbred horse in the area near the town of Montreuil, France. A single case of sarcoid in a Thoroughbred horse in France was reported in a Thoroughbred horse in the area near the town of Montreuil, France. A single case of sarcoid in a Thoroughbred horse in France was reported in a Thoroughbred horse in the area near the town of Montreuil, France.

As of August 2008, the United States Department of Agriculture reported 26 cases of Eastern Equine Encephalitis in the USA, the majority of which occurred in Florida. The number of cases of Eastern Equine Encephalitis in Florida increased from 17 in 2007 to 21 in 2008. The number of cases of Eastern Equine Encephalitis in Florida increased from 17 in 2007 to 21 in 2008. The number of cases of Eastern Equine Encephalitis in Florida increased from 17 in 2007 to 21 in 2008. The number of cases of Eastern Equine Encephalitis in Florida increased from 17 in 2007 to 21 in 2008. The number of cases of Eastern Equine Encephalitis in Florida increased from 17 in 2007 to 21 in 2008. The number of cases of Eastern Equine Encephalitis in Florida increased from 17 in 2007 to 21 in 2008.

In 2007, an outbreak of equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA.

Toxic Plants of North America

Pesticides:

Toxic Plants of North America

Poisoning in Horses

Plants, Feeds, and Food Additives: Fruits can contain toxic plants and grains that can pose a risk at different times during the year and under certain circumstances. Some toxic plants develop toxins that remain for long periods, and exposure can result in death. Grazing or ingestion of these plants can cause death. Grazing or ingestion of these plants can cause death. Grazing or ingestion of these plants can cause death.

The RESEF (Réseau d’Épidémie Ennemi de la Salle à Manger) in France is the French surveillance network for infectious diseases in horses and was implemented in 1999. Since January 2008, a new legal framework including an official declaration system has been implemented in France. Since January 2008, a new legal framework including an official declaration system has been implemented in France. Since January 2008, a new legal framework including an official declaration system has been implemented in France. Since January 2008, a new legal framework including an official declaration system has been implemented in France.

In July 2007, an outbreak of equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA.

In July 2007, an outbreak of equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA. It was the first year in which equine viral arteritis was diagnosed in the USA.

The RESEF (Réseau d’Épidémie Ennemi de la Salle à Manger) in France is the French surveillance network for infectious diseases in horses and was implemented in 1999. Since January 2008, a new legal framework including an official declaration system has been implemented in France. Since January 2008, a new legal framework including an official declaration system has been implemented in France.
Poisoning in Horses

Poisoning in horses is not a common occurrence. It is relatively rare in comparison with other diseases. It happens when horses consume toxic substances, either due to dietary mistakes or accidents. The substances can be difficult to detect, and poisoning can be fatal. Authorities usually warn owners about toxic plants and substances to prevent poisoning.

Worldwide, there are various well-known toxic substances that are harmful to horses. Some of these substances may appear in feeds, while others may be ingested intentionally or accidentally. It is crucial for veterinarians and owners to be cautious and watch out for symptoms of poisoning. Early intervention can save a horse's life. It is essential for people to know how to manage and treat poisoning in horses effectively and prevent it in the future.

The scenario of EHV cases in France in 2008 was comparable to the outbreak in 2007. Therefore, the number of cases was significant. The number of EHV-2 cases was 25, and the number of EHV-1 cases was 13. This indicates that the disease is still prevalent in France. It is essential to monitor the disease and take necessary precautions to prevent its spread.

In France, there are different states and regions, each with its own guidelines and regulations. It is crucial to follow these guidelines to ensure the health and safety of horses. Authorities should collaborate and share knowledge to develop effective strategies to control and prevent the spread of EHV.

Further, it is essential to monitor the trends of EHV cases and take necessary actions to prevent the spread of the disease. Collaboration among researchers, veterinarians, and authorities is crucial to develop effective strategies to control and prevent the spread of EHV.

In conclusion, EHV cases continue to be a threat to horses in France. It is crucial to monitor the disease and take necessary precautions to prevent its spread. Collaboration among researchers, veterinarians, and authorities is essential to develop effective strategies to control and prevent the spread of EHV.

Symptomatic Surveillance of Equine Infections in France

In 2007, an outbreak of EHV continued in France. The outbreak involved three premises, and one of them was euthanized. A second outbreak involved three horses, two of which were euthanized. A second outbreak involved three horses, two of which were euthanized. This indicates that the disease is still prevalent in France. It is crucial to monitor the disease and take necessary precautions to prevent its spread.

In conclusion, EHV cases continue to be a threat to horses in France. It is crucial to monitor the disease and take necessary precautions to prevent its spread. Collaboration among researchers, veterinarians, and authorities is essential to develop effective strategies to control and prevent the spread of EHV.

The Global EHV Surveillance System (GEHVS) is a collaborative network involving countries, stakeholders, and partners. It aims to provide a comprehensive picture of the status of EHV cases worldwide. The system involves the collection and analysis of surveillance data, the sharing of knowledge and expertise, and the development of effective strategies to control and prevent the spread of EHV.

The GEHVS has recorded a significant number of EHV cases worldwide. It has identified several factors that influence the spread of EHV, such as the presence of EHV cases in neighboring countries, the movement of horses, and the availability of resources for prevention and control. The system has also identified several strategies to control and prevent the spread of EHV, such as the use of vaccines, the implementation of biosecurity measures, and the provision of resources for prevention and control.

In conclusion, the GEHVS is a valuable tool for monitoring the status of EHV cases worldwide and developing effective strategies to control and prevent the spread of the disease.

CONTACT: Dr. Georges Deplazes, 13013, Switzerland.
Dr. Georges Deplazes is a renowned veterinarian and researcher in the field of veterinary medicine. He has been involved in the development of the Global EHV Surveillance System and has contributed to the prevention and control of EHV cases worldwide.

The Global EHV Surveillance System is a collaborative network involving countries, stakeholders, and partners. It aims to provide a comprehensive picture of the status of EHV cases worldwide. The system involves the collection and analysis of surveillance data, the sharing of knowledge and expertise, and the development of effective strategies to control and prevent the spread of EHV.

The GEHVS has recorded a significant number of EHV cases worldwide. It has identified several factors that influence the spread of EHV, such as the presence of EHV cases in neighboring countries, the movement of horses, and the availability of resources for prevention and control. The system has also identified several strategies to control and prevent the spread of EHV, such as the use of vaccines, the implementation of biosecurity measures, and the provision of resources for prevention and control.

In conclusion, the GEHVS is a valuable tool for monitoring the status of EHV cases worldwide and developing effective strategies to control and prevent the spread of the disease.

CONTACT: Dr. Georges Deplazes, 13013, Switzerland.
Dr. Georges Deplazes is a renowned veterinarian and researcher in the field of veterinary medicine. He has been involved in the development of the Global EHV Surveillance System and has contributed to the prevention and control of EHV cases worldwide.
Poisoning in Horses

Poisoning in horses is not a common occurrence in the United States. However, the disease can be devastating and fatal. Limiting access to toxic plants, keeping horses indoors, and providing protein-rich feeds are key strategies to prevent poisoning in horses. High-risk plants include nightshade, foxglove, and foxglove flowers. Horses that are eating young leaves of nightshade or foxglove flowers can be at risk of poisoning.

Plants, Foods, and Feed Additives: Foods can contain toxic plants and grains that can pose risks at certain times during the year or under certain circumstances. Toxic plants can affect horses and, in severe cases, cause death. Exposure to these substances can cause symptoms such as fever, lethargy, weakness, and death. Veterans and their families should be aware of the risks associated with the consumption of these products.

References:

Acknowledgments: The authors thank the officers of the American College of Veterinary Internal Medicine (ACVIM) and the Association of Veterinary Colleges of Canada (AVCC) for their support and assistance in preparing this publication.
The availability of the horse genome se- quence is facilitating our study of CFS. DNA sequence information for any horse gene of interest can be downloaded from the database. The necessary tools are already available for sequencingcandidate genes from affected and non-affected individuals. Based on the gene mutations causing DA in humans, we suspect that the causative gene in horses may affect the same processes.

Even though this research has begun, success will depend on continued support from the horse industry, especially through providing research samples from foals and horses and information on sizes and dams that have produced one or more foals with CFS. All information is kept confidential, including the identity of horses and farms. We expect one day to develop a diagnostic test that will provide information that will allow farmers to avoid matings which will produce CFS foals and to determine which foals will respond to treatment. The participation of breeding horse owners is imperative if the cause of CFS is to be identified.

CONFLICTS: Dr. Linda, (859) 257-4757, linda.lange@uky.edu, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky.

The availability of the horse genome sequence is facilitating our study of CFS. DNA sequence information for any horse gene of interest can be downloaded from the database. The necessary tools are already available for sequencing candidate genes from affected and non-affected individuals. Based on the gene mutations causing DA in humans, we suspect that the causative gene in horses may affect the same processes.

Even though this research has begun, success will depend on continued support from the horse industry, especially through providing research samples from foals and horses and information on sizes and dams that have produced one or more foals with CFS. All information is kept confidential, including the identity of horses and farms. We expect one day to develop a diagnostic test that will provide information that will allow farmers to avoid matings which will produce CFS foals and to determine which foals will respond to treatment. The participation of breeding horse owners is imperative if the cause of CFS is to be identified.

CONFLICTS: Dr. Linda, (859) 257-4757, linda.lange@uky.edu, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky.
The availability of the horse genome sequence is facilitating our study of CFS. DNA sequence information for any horse gene of interest can be downloaded from the Horse Genome Database. The necessary tools are needed for sequencing candidate genes from affected and non-affected individuals. Based on the gene mutation causing DA in humans, we are trying to identify candidate genes in an effort to identify mutations that cause CFS. Even though this research has begun, success will depend on continued support and information from horse industry, especially, through providing research samples from horses and information on sites and farms that have produced one or more foals with CFS. All information is kept confidential, including the identity of horses and farms. We expect one day to develop a diagnostic test that will provide information allowing farmers to avoid stallings that will produce DA foals so that we can determine which genes control the expression of CFS. The availability of the horse genome sequence is making possible the search for candidate genes that cause CFS.

 Venomous Spiders: Bites from venomous spiders can also pose risks to horses. Black widow spiders, fire ants, and brown recluse spiders can cause severe systemic reactions. The availability of the horse genome sequence is facilitating our study of CFS. DNA sequence information for any horse gene of interest can be downloaded from the Horse Genome Database. The necessary tools are needed for sequencing candidate genes from affected and non-affected individuals. Based on the gene mutation causing DA in humans, we are trying to identify candidate genes in an effort to identify mutations that cause CFS. Even though this research has begun, success will depend on continued support and information from horse industry, especially, through providing research samples from horses and information on sites and farms that have produced one or more foals with CFS. All information is kept confidential, including the identity of horses and farms. We expect one day to develop a diagnostic test that will provide information allowing farmers to avoid stallings that will produce DA foals so that we can determine which genes control the expression of CFS.